Нейронные Сети Реферат Заключение

Нейронные Сети Реферат Заключение

Нейронные Сети Реферат Заключение Rating: 6,7/10 9191reviews

Нейронные сети. Распознавание образов. Московский авиационный институт (государственный технический университет).

Читать реферат online по теме 'Нейронные сети'. Раздел: Информационное обеспечение, программирование, 3198, Загружено: 30.09.2013 0:00:00. Нейронные сети в каталоге лучших рефератов сети, всего более 500 000 работ. Реферат: Нейронные сети и их устройство. Нейронные сети представляют собой новую и весьма перспективную вычислительную. Заключение.

Нейронные Сети Реферат Заключение

Изначально сети даются эталонные образы – такие образы. Главная · Рефераты · Контрольные работы · Курсовые работы. Так же нейронный сети могут применяться в криминалистике (анализ.

Распознавание образов»Студентка: Никонова И. А. Преподаватели: Морозов П. Г. Сошников Д. В. Москва, 2. 01. 0Содержание Введение. Биологический прототип и искусственный нейрон. Сети Хопфилда. Первое систематическое изучение искусственных нейронных сетей было предпринято Маккалокком и Питтсом в 1. Позднее они исследовали сетевые парадигмы для распознавания изображений, подвергаемых сдвигам и поворотам.

Они заключаются в том, чтобы классифицировать входной образ, то есть отнести его к какому- либо известному сети классу. Изначально сети даются эталонные образы – такие образы, принадлежность которых к определенному классу известна. Затем на вход сети подается некоторый неизвестный образ, и сеть пытается по определенному алгоритму соотнести его с каким- либо эталонный образом.

Можно сказать, что нейросети проводят кластеризацию образов. Так как кластерный анализ применяется исследователями рынка ценных бумаг, то нейронные сети могут быть использованы и для прогнозирования стоимости акций, что является актуальной задачей, к тому же строго неразрешимой на данный момент. То есть, рассматривая сетевые конфигурации и алгоритмы, исследователи применяют термины, заимствованные из принципов организации мозговой деятельности.

Но на этом аналогия заканчивается. Наши знания о работе мозга столь ограничены, что мало бы нашлось точно доказанных закономерностей для тех, кто пожелал бы руководствоваться ими. Поэтому разработчикам сетей приходится выходить за пределы современных биологических знаний в поисках структур, способных выполнять полезные функции. Во многих случаях это приводит к необходимости отказа от биологического правдоподобия, мозг становится просто метафорой, и создаются сети, невозможные в живой материи или требующие неправдоподобно больших допущений об анатомии и функционировании мозга. Их функционирование часто имеет внешнее сходство с человеческим познанием, поэтому трудно избежать этой аналогии. К сожалению, такие сравнения неплодотворны и создают неоправданные ожидания, неизбежно ведущие к разочарованию.

Около  нейронов участвуют в примерно  передающих связях, имеющих длину метр и более. Каждый нейрон обладает многими свойствами, общими с другими органами тела, но ему присущи абсолютно уникальные способности: принимать, обрабатывать и передавать электрохимические сигналы по нервным путям, которые образуют коммуникационную систему мозга. Дендриты идут от тела нервной клетки к другим нейронам, где они принимают сигналы в точках соединения, называемых синапсами. Принятые синапсом входные сигналы передаются к телу нейрона.

Здесь они суммируются, причем одни входы стремятся возбудить нейрон, другие — воспрепятствовать его возбуждению. Когда суммарное возбуждение в теле нейрона превышает некоторый порог, нейрон возбуждается, посылая по аксону сигнал другим нейронам. У этой основной функциональной схемы много усложнений и исключений, тем не менее, большинство искусственных нейронных сетей моделируют лишь эти простые свойства. Рис. Типичные биологические нейроны. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, аналогичный синаптической силе, и все произведения суммируются, определяя уровень активации нейрона.

Рис. 2 представлена модель, реализующая эту идею. Множество входных сигналов, обозначенных  , поступает на искусственный нейрон. Эти входные сигналы, в совокупности обозначаемые вектором , соответствуют сигналам, приходящим в синапсы биологического нейрона. Каждый сигнал умножается на соответствующий вес  , и поступает на суммирующий блок, обозначенный . Каждый вес соответствует . Суммирующий блок, соответствующий телу биологического элемента, складывает взвешенные входы алгебраически, создавая выход, который мы будем называть NET.

В векторных обозначениях это может быть компактно записано следующим образом: NET = XW. Сигнал NET далее, как правило, преобразуется активационной функцией F и дает выходной нейронный сигнал OUT. Активационная функция может быть обычной линейной функцией. OUT = F(NET)где F — пороговая функция.

OUT = где T — некоторая постоянная пороговая величина. Рис. 2 блок, обозначенный F, принимает сигнал NET и выдает сигнал OUT. Если блок F сужает диапазон изменения величины NET так, что при любых значениях NET значения OUT принадлежат некоторому конечному интервалу, то F называется . В качестве . Эта функция математически выражается как . Таким образом,По аналогии с электронными системами активационную функцию можно считать нелинейной усилительной характеристикой искусственного нейрона.

Коэффициент усиления вычисляется как отношение приращения величины OUT к вызвавшему его небольшому приращению величины NET. Он выражается наклоном кривой при определенном уровне возбуждения и изменяется от малых значений при больших отрицательных возбуждениях (кривая почти горизонтальна) до максимального значения при нулевом возбуждении и снова уменьшается, когда возбуждение становится большим положительным. Гроссберг (1. 97.

Каким образом одна и та же сеть может обрабатывать как слабые, так и сильные сигналы? Слабые сигналы нуждаются в большом сетевом усилении, чтобы дать пригодный к использованию выходной сигнал. Однако усилительные каскады с большими коэффициентами усиления могут привести к насыщению выхода шумами усилителей (случайными флуктуациями), которые присутствуют в любой физически реализованной сети. Программа Шейко Для Разрядников на этой странице. Сильные входные сигналы, в свою очередь, также будут приводить к насыщению усилительных каскадов, исключая возможность полезного использования выхода. Центральная область логистической функции, имеющая большой коэффициент усиления, решает проблему обработки слабых сигналов, в то время как области с падающим усилением на положительном и отрицательном концах подходят для больших возбуждений. Таким образом, нейрон функционирует с большим усилением в широком диапазоне уровня входного сигнала.